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Changes to the identity of EndoC‑βH1 
beta cells may be mediated by stress‑induced 
depletion of HNRNPD
Nicola Jeffery1, David Chambers2, Brandon M. Invergo3, Ryan M. Ames4 and Lorna W. Harries1*   

Abstract 

Background:  Beta cell identity changes occur in the islets of donors with diabetes, but the molecular basis of this 
remains unclear. Protecting residual functional beta cells from cell identity changes may be beneficial for patients 
with diabetes.

Results:  A somatostatin-positive cell population was induced in stressed clonal human EndoC-βH1 beta cells and 
was isolated using FACS. A transcriptomic characterisation of somatostatin-positive cells was then carried out. Gain of 
somatostatin-positivity was associated with marked dysregulation of the non-coding genome. Very few coding genes 
were differentially expressed. Potential candidate effector genes were assessed by targeted gene knockdown. Tar-
geted knockdown of the HNRNPD gene induced the emergence of a somatostatin-positive cell population in clonal 
EndoC-βH1 beta cells comparable with that we have previously reported in stressed cells.

Conclusions:  We report here a role for the HNRNPD gene in determination of beta cell identity in response to cellular 
stress. These findings widen our understanding of the role of RNA binding proteins and RNA biology in determining 
cell identity and may be important for protecting remaining beta cell reserve in diabetes.
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Background
The processes of life can produce a very stressful environ-
ment for cells. When the balance of homeostasis is dis-
rupted, cellular stressors such as fluctuating glycaemia, 
dyslipidaemia, hypoxia or increased levels of inflamma-
tory factors may become so prevalent that the viability or 
identity of cell populations may become compromised. 
This phenomenon occurs in multiple tissues, but is par-
ticularly prevalent in tissues such as pancreatic islets that 
are directly involved in metabolic homeostasis [1]. Loss 
of beta cell mass is a characteristic of both type 1 and type 
2 diabetes (T1D and T2D) [2], arising from apoptosis, 

but also from changes in endocrine cell identity [3]. The 
consequences of these changes are a progressive deterio-
ration in the ability of the pancreas to produce enough 
insulin to regulate the blood sugar. However, even in long 
duration diabetes, a small reservoir of active and respon-
sive beta cells remains. Even many years after diagno-
sis, the majority of patients with T1D maintain glucose 
responsive post-prandial insulin secretion [4]. The pro-
tection of these ‘stress resistant’ beta cells is a key clinical 
priority, because in the future, strategies for their regen-
eration may emerge.

Beta cell identity is maintained by several mechanisms. 
Firstly, cells are programmed to remain as beta cells, 
even in the face of cellular stress, by the expression of a 
portfolio of beta cell transcription factors, which include 
PDX1, NKX6-1, PAX6, NKX2-2, MAFA and FOXO1 [5, 
6]. Beta cell identity is also maintained by the exclusion 
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of expression of genes associated with other endocrine 
cell types with non-oxidative metabolism (‘disallowed’ 
genes). These include genes encoding lactate dehydro-
genase (LDHA) and the monocarboxylate transporter 1 
(SLC16A1) [7]. Under conditions of cell stress, beta cells 
may undergo transdifferentiation, de-differentiation and/
or re-differentiation into other pancreatic endocrine cell 
types [8–11], although the relevance of this to human 
disease remains to be established. Data in humans are 
more scarce, but dedifferentiation changes have been 
documented [12] as have cell identity changes from beta 
cells to alpha cells [13] or to delta cells [14].

We have previously determined that exposure to dia-
betomimetic cellular stressors leads to the emergence of 
a small somatostatin-positive population in the clonal 
human beta cell line EndoC-βH1 [14]. This is echoed in 
our observation of elevated numbers of somatostatin-
positive cells in the pancreatic islets of patients with 
either T1D or T2D [14]. Transcriptomic analysis of 
mixed cultures revealed that transcripts encoding pro-
teins involved in maintenance of beta cell fate or function 
demonstrated disruption, as did transcripts involved in 
the regulation of mRNA splicing, and splicing patterns 
themselves. These changes were ablated by the removal of 
the cellular stressor, or by treatment with the AKT inhibi-
tor SH-6 [14]; AKT is known to be a negative regulator of 
splicing factor expression [15]. Whilst these findings rep-
resented a useful step forward in our understanding of 
how diabetes-related cellular stressors may mediate beta 
cell identity changes, our understanding of this process is 
still incomplete. The gene expression changes occurring 
specifically in the somatostatin-positive cells are difficult 
to deduce from mixed cultures, since some changes may 
be induced by cell stress, but are unrelated to changes in 
hormone expression.

Here, we aimed to identify the gene expression 
changes, and the specific effector genes, that differenti-
ate the somatostatin-positive population from the soma-
tostatin-negative cell population under conditions of 
cellular stress. We cultured human clonal beta cell line 
EndoC-βH1 in the presence of a diabetomimetic envi-
ronment (25  mM glucose, 50  μM palmitic acid), and 
isolated the emergent somatostatin-positive cell popula-
tion by fluorescence assisted cell sorting (FACS). Differ-
ential gene expression in somatostatin-positive cells and 
somatostatin-negative counterparts was assessed in the 
same culture using differential gene expression analysis, 
weighted gene network correlation analysis (WGCNA) 
and GO terms enrichment analysis. We determined that 
the major feature of the somatostatin-positive cell pop-
ulation was a dramatic dysregulation of the non-coding 
genome. Of the 100 most dysregulated transcripts, only 
nine originated from coding genes. Knockdown of key 

coding and non-coding transcripts disrupted in somato-
statin-positive cells revealed that ablation of the expres-
sion of the heterogeneous nuclear ribonucleoprotein 
particle D (HNRNPD) gene alone resulted in the emer-
gence of a similar somatostatin-positive population of 
cells to that seen in our original work. The HNRNPD 
gene encodes a multifunctional RNA binding protein 
with known roles in the regulation of the non-coding 
genome, regulation of mRNA splicing, stability and 
translation efficiency [16–18]. HNRNPD is one of a port-
folio of RNA binding proteins that are associated with 
cellular plasticity and response to cellular stress [19, 20]. 
Our data are consistent with a model by which stress-
related changes in HNRNPD gene expression levels lead 
to transcriptome-wide changes to the dynamics of RNA 
regulation, dysregulation of the non-coding genome and 
the emergence of a somatostatin-positive cell population.

Results
Isolation of a somatostatin‑positive subpopulation 
of EndoC‑βH1 cells
Treatment with 25  mM glucose and 50  μM palmitic 
acid induced the emergence of a somatostatin-positive 
sub-population of EndoC-βH1 cells comprising approxi-
mately 4% of the population, concordant with our pre-
vious observations [16]. An additional 1–2% of cells 
demonstrated evidence of dual hormone positivity for 
somatostatin and insulin, but it is currently unclear 
whether these cells are genuinely dual hormone posi-
tive, or instead represent ‘bleed through’ of fluorophores 
or overlap of cells in different planes. We were able to 
isolate an enriched population of approximately 20,000 
cells per replicate for both somatostatin-enriched and 
somatostatin-depleted cell populations by FACS (Fig. 1a, 
b). Quantitative real-time PCR analysis revealed that 
the somatostatin-positive cells demonstrated a 2.5 fold 
increase in somatostatin gene expression (p = 0.003; 
Fig.  1c) and a 2.7 fold decrease in insulin expression 
(p = 0.007; Fig.  1d). There was no change in the expres-
sion of delta cell specific genes HHEX and GHSR 
(p = 0.71 and 0.75 respectively). Although not a pure 
population consisting exclusively of somatostatin-posi-
tive cells, we achieved a suitable degree of enrichment to 
be able to assess any transcriptomic changes.

Few coding genes demonstrate differential expression 
in somatostatin‑positive cells
Our initial analysis identified 837 differentially-expressed 
genes, out of 38,623 genes expressed in either insulin or 
somatostatin-positive cells. 33 of these demonstrated 
> twofold differences in expression, although none 
reached statistical significance after adjustment for mul-
tiple testing (Table  1). It is particularly noteworthy that 
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only 21 of these transcripts in the top 100 represent 
coding genes. These were HNRNPD (fold change −  2.7, 
unadjusted p value = 0.0005), GPN1 (fold change 2.35; 
p = 0.002), PHF12 (fold change − 2.29; p value = 0.0002), 
C1Orf123 (fold change − 2.18; p = 0.002), ZNF248 (fold 
change = − 2.08; p = 0.0004), SENP7 (fold change − 2.05; 
p = 0.0004), DNAJC11 (fold change − 2.00; p = 0.001) and 
MALT1 (fold change 2.00; p = 0.001). Another prominent 
feature in this dataset is the prevalence of differentially-
expressed small RNAs, processed pseudogene derived 

transcripts, variant U6 and U7 small nucleolar ribonu-
cleoparticles (snRNPs), snoRNAs and other non-coding 
transcripts in somatostatin-positive cells.

The differentially‑expressed genome 
in somatostatin‑positive cells is enriched in non‑coding 
transcripts
Having observed that many of the most dysregulated 
transcripts in our dataset were non-coding transcripts, 
we carried out an enrichment analysis to identify 

Fig. 1  Isolation of an enriched population of somatostatin-positive cells. We isolated an enriched population of somatostatin-positive cells 
by FACS (n = 6 biological replicates; 20,000 cells per replicate). Figure shows ungated EndoC βH1 cells that were stained and sorted by SST 
expression. Gating thresholds were set using unstained cells as a control and an isotype control. A Graph shows gating around the P3 FITC 
somatostatin-positive subpopulation. The P4 gate is surrounding those cells with no somatostatin staining. B Graph shows gating around the P3 
FITC somatostatin-positive sub population. The gate was set conservatively to ensure a more pure enrichment of somatostatin-positive cells. C 
Graph shows log2 increase in the expression of somatostatin (SST) in the enriched population of somatostatin-positive beta cells. D Graph shows 
log2 decrease in the expression of insulin (INS) in the enriched population of somatostatin-positive beta cells. **p =  < 0.01
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Table 1  This table shows the 100 most dysregulated genes with a p value of < p = 0.005

Gene symbol INS Avg (log2) SST Avg (log2) INS Standard 
deviation

SST Standard 
deviation

Fold change p-val

RNU7-26P 6.85 4.43 1.83 0.21 − 5.33 0.00110

RNU7-53P 8.17 6.02 1.98 0.75 − 4.45 0.00270

MIR3198-1 8.15 6.1 1.34 0.67 − 4.15 0.00400

MTND4LP1 8.84 7.01 0.93 0.4 − 3.56 0.00010

MIR548T 5.87 4.04 1.22 0.21 − 3.55 0.00040

MIR181A1 3.75 5.4 0.43 0.83 3.16 0.00100
SNORA41 9.39 7.76 0.94 0.26 − 3.1 0.00040

LINC01628 4.49 6.08 0.45 0.73 3.02 0.00040

SNRPGP11 7.47 5.92 0.76 0.58 − 2.93 0.00070

RNU6-866P 8.7 7.17 0.45 0.58 − 2.9 0.00010

MED6P1 5.76 4.26 0.8 0.34 − 2.83 0.00470

HNRNPD 5.45 4.01 0.46 0.46 − 2.7 0.00050
RNU2-36P 5.93 4.5 0.48 0.47 − 2.69 0.00007

SNORA46 6.99 5.58 1.14 0.22 − 2.65 0.00200

MIR373 7.24 5.88 0.33 0.23 − 2.57 0.00002

RNA5-8SP3 5.41 4.09 0.57 0.43 − 2.51 0.00170

RNU7-24P 6.27 4.94 0.85 0.36 − 2.51 0.00180

MIR1277 6.21 4.88 0.54 0.83 − 2.5 0.00100

YWHAZP5 6.06 4.75 0.63 0.42 − 2.49 0.00040

MIR548AC 12.26 10.97 1.3 0.52 − 2.45 0.00270

GPN1 3.77 5 0.32 0.61 2.35 0.00200
MIR548F5 7.01 5.81 0.71 0.6 − 2.31 0.00280

PHF12 8.04 6.84 0.62 0.58 − 2.29 0.00180
RNY4P37 5.13 3.94 0.62 0.2 − 2.28 0.00007

RAB11AP1 4.04 5.18 0.46 0.79 2.2 0.00270

C1orf123 6.23 5.1 0.74 0.68 − 2.18 0.00220
RN7SL748P 5.53 4.42 0.71 0.57 − 2.15 0.00360

ZNF965P 5.81 4.71 0.38 0.44 − 2.13 0.00470

MTND1P23 18.75 17.67 0.85 0.81 − 2.12 0.00230

RN7SKP146 6.26 5.18 0.63 0.4 − 2.12 0.00400

RNU7-188P 5.43 4.35 0.76 0.32 − 2.11 0.00250

MTND3P3 5.9 4.82 0.45 0.42 − 2.11 0.00260

POLR3KP1 4.08 5.15 0.24 0.31 2.09 0.00007

RNU6-250P 3.82 4.89 0.24 0.51 2.09 0.00110

ZNF248 5.68 4.63 0.23 0.43 − 2.08 0.00040
SENP7 4.92 3.89 0.58 0.17 − 2.05 0.00040
MIR5684 8.43 7.4 0.65 0.67 − 2.04 0.00270

RNU1-133P 5.7 4.68 0.7 0.46 2.04 0.00360

MIR5003 6.02 4.99 1.15 0.44 2.04 0.00430

GXYLT1P5 4.3 5.32 0.43 0.62 2.03 0.00230

RNU6-882P 3.95 4.95 0.28 0.36 2.01 0.00180

DNAJC11 4.75 3.76 0.68 0.25 − 2 0.00100
RNU6-571P 5.97 4.96 0.45 0.3 − 2 0.00120

RPS12P2 6.08 5.08 0.45 0.59 2 0.00290

MALT1 3.79 4.78 0.21 0.76 2 0.00330
RNY4P34 7.19 6.2 0.43 0.46 − 1.99 0.00070

RNU7-41P 4.97 3.99 0.45 0.19 − 1.97 0.00050

SCARNA11 6.47 5.5 0.5 0.38 1.97 0.00160

GAPDHP28 4.7 3.72 0.68 0.11 1.97 0.00190
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Table 1  (continued)

Gene symbol INS Avg (log2) SST Avg (log2) INS Standard 
deviation

SST Standard 
deviation

Fold change p-val

FTH1P7 7.46 6.48 0.3 0.53 1.97 0.00210

MEOX2-AS1 4.41 5.38 0.27 0.77 1.96 0.00250

U7 4.21 5.17 0.41 0.41 1.95 0.00270

RNU1-32P 6.47 5.52 0.78 0.25 − 1.94 0.00320

RNU6-966P 5.49 4.54 0.6 0.26 − 1.94 0.00400

LAPTM4BP2 4.02 4.97 0.29 0.56 1.94 0.00130

CSHL1 4.01 4.96 0.19 0.65 1.94 0.00470

ZBTB20-AS4 4.1 5.05 0.3 0.47 1.93 0.00180

OMG 4.25 5.19 0.42 0.4 1.92 0.00140

IGLV3-15 6.04 5.1 0.46 0.16 − 1.91 0.00360

MTCO1P3 5.71 4.77 0.38 0.42 − 1.91 0.00410

CA5BP1 6.98 6.06 0.48 0.28 − 1.9 0.00100

UQCRHP4 4.75 3.83 0.34 0.22 − 1.89 0.00040

MTCO3P12 15.24 14.32 0.76 1.12 − 1.89 0.00170

MTND6P11 8.08 7.16 0.55 0.85 − 1.89 0.00170

FAR1P1 5.21 4.29 0.42 0.35 − 1.89 0.00230

RPL30P15 3.93 4.85 0.36 0.46 1.89 0.00430

ATXN1 7.17 6.26 0.23 0.45 − 1.88 0.00060

MIR450A1 4.47 5.38 0.43 0.28 1.88 0.00100

HMGN2P31 6.09 5.18 0.23 0.26 − 1.87 0.00010

HMGN2P31 6.09 5.18 0.23 0.26 − 1.87 0.00010

RPL21P32 4.99 4.09 0.37 0.31 − 1.87 0.00270

RN7SKP94 7.73 6.84 0.41 0.37 − 1.86 0.00100

MIR543 4.89 4.07 0.5 0.38 − 1.76 0.00140
HMGN2P15 6.99 6.1 0.61 0.18 − 1.85 0.00140

HNRNPH3 5.73 4.84 0.38 0.34 − 1.85 0.00180

TCTA​ 7.11 6.23 0.59 0.44 − 1.85 0.00440

IKZF3 4.87 3.99 0.47 0.13 − 1.84 0.00080

SUMO2P15 5.17 4.29 0.41 0.46 − 1.84 0.00300

UBDP1 5.17 4.3 0.45 0.39 − 1.83 0.00360

FAM81B 3.89 4.76 0.33 0.27 1.83 0.00050

DHX9 4.09 4.97 0.34 0.55 1.83 0.00350

HERC2P8 5.21 4.35 0.42 0.15 − 1.82 0.00020

RNU6-139P 5.24 4.38 0.49 0.37 − 1.82 0.00070

ULK4P3 6.46 5.6 0.34 0.38 − 1.82 0.00150

MIR450B 4.95 4.08 0.42 0.27 − 1.82 0.00220

C3orf35 4.92 4.06 0.5 0.21 − 1.82 0.00480

OTUD3 5.15 4.3 0.48 0.25 − 1.81 0.00200

RPL36AP48 3.94 4.8 0.16 0.41 1.81 0.00190

FAM157C 4.96 4.12 0.42 0.25 − 1.8 0.00120

MTCO1P5 5.1 4.26 0.3 0.2 − 1.79 0.00220

FAM177B 4.69 3.85 0.59 0.18 − 1.79 0.00250

RNU6-903P 4.04 4.88 0.4 0.35 1.79 0.00190

HMGN1P24 5.06 4.23 0.36 0.15 − 1.78 0.00060

TARDBPP1 5.55 4.72 0.68 0.15 − 1.78 0.00200

DCDC5 4.42 3.59 0.51 0.28 − 1.78 0.00490

MTCO3P22 5.56 4.73 0.47 0.27 − 1.77 0.00340

LINC00243 4.51 3.69 0.32 0.34 − 1.76 0.00330

PRKG2 5.17 4.36 0.56 0.29 − 1.76 0.00460
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whether the apparent over-representation of this class 
of genes was greater than would be expected by chance. 
This analysis confirmed that non-coding multiple com-
plex loci, small RNAs, single gene non-coding loci and 
precursor miRNAs all demonstrated significant over-rep-
resentation in our data (p = 4.58 × 10–7, p = 1.08 × 10–12, 
p = 6.41 × 10–9 and p = 3.16 × 10–8 respectively, whilst 
coding genes demonstrated an under-representation 
(p = 1.40 × 10–9; Table 2). The ribosomal class showed no 
significant change in the number of expected dysregu-
lated genes (p = 0.07).

WGCNA suggests that transcripts enriched 
in somatostatin‑positive cells cluster into modules 
associated with dysregulated ubiquitination, RNA 
and microRNA processing
We then looked for modules of co-ordinated differential 
expression in somatostatin-positive cells by the use of a 
weighted gene correlation network analysis (WGCNA). 
After initial filtering of the somatostatin-positive cell 
dataset to remove AceView genes and unannotated 
transcripts, 52,986 gene expression features remained 
in our dataset which were organised into 227 modules. 
WGCNA identified 11 nominally-significant gene clus-
ters, although again, these did not meet the threshold 
for multiple testing (Table  3a). The top three eigengene 
modules (light sky blue 2, orange red 4 and salmon 1) 
were taken forward into Panther GO biological pro-
cesses analyses to identify biochemical or cellular func-
tion pathways which were enriched in modules of genes 
demonstrating differential expression in somatosta-
tin-positive cells. From the light sky blue 2 module 11 

biological process pathways passed a correction for false 
discovery rate and identified enrichment for processes 
relating to dysregulated proteostasis (Table 3b). The top 
three processes included protein modification by small 
protein removal (p = 3.51 × 10–6), protein deubiquitina-
tion (p = 4.22 × 10–6) and modification-dependent mac-
romolecule catabolic processes (2.86 × 10–4; Table  3b). 
GO biological processes for the orange red 4 and salmon 
1 gene modules showed nominal significance for nine 
biological processes for which the top three were miRNA 
2ʹ-O-methylation (p = 0.003), immune system process 
(p = 0.004) and negative regulation of pre-miRNA pro-
cessing (p = 0.005; Table 3b).

Patterns of differential splicing in somatostain positive 
cells
We assessed differential expression at the level of exon 
usage in somatostatin-positive cells compared with 
somatostatin-negative cells. In the dataset overall, we 
have identified that approximately 26% of all splice events 
in somatostatin-positive cells demonstrate disrupted 
patterns of mRNA processing. These changes demon-
strated dysregulation of constitutive splicing in the form 
of intron retentions (55.74%), alternative 3ʹ acceptor 
site usage (25.59%) and alternative 5ʹ donor site usage 
(19.67%). Genes with differential splicing patterns are 
given in Table 4a. Genes were screened for passing nomi-
nal significance of p < 0.01, a splicing index score of > 2 or 
< − 2 and an exon event score of > 0.1. Both splicing index 
and exon event scores are algorithms within the TAC 
analysis software that provides a measure for likelihood 
of a splicing event. Splicing index scores of > 2 or < − 2 

Table 1  (continued)

Gene symbol INS Avg (log2) SST Avg (log2) INS Standard 
deviation

SST Standard 
deviation

Fold change p-val

COX6CP17 6.36 5.56 0.4 0.24 − 1.75 0.00300

RN7SKP177 6.8 6 0.35 0.22 − 1.74 0.00030

Pre-microRNAs demonstrating statistical significant changes in somatostatin-positive cells at the level of p =  < 0.001 are highlighted in bold and italics. Coding genes 
(canonical transcripts not pseudogene variants) with fold changes > 2.0 or < − 2.0 are highlighted in bold

Table 2  Non-coding transcripts are over-represented in somatostatin-positive cells

We carried out a χ2 analysis to determine whether there were more non-coding transcripts in somatostatin-positive cells than one would expect by chance. This table 
shows the results of this analysis for coding transcripts, non-coding transcripts, precursor miRNAs and small RNAs

Non-coding genes observed in SST 
positive cells

Non-coding genes expected in SST 
positive cells

p value

Coding genes 134 216 2.05 × 10–9

Non-coding genes 636 519 4.33 × 10–9

Precursor miRNAs 118 71 5.76 × 10–9

Small RNAs 220 137 8.09 × 10–14
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indicate a possible alternative splicing event [21]. Exon 
events are scored between 0 and 1 with events > 0.1 an 
indicator for an aberrant splicing event [21]. The screen 
identified 29 genes (Table 4a) which were taken forward 
to Panther for GO Biological Processes analysis and iden-
tified nominal significance (p < 0.01) for 21 different bio-
logical process pathways, of which the top was positive 

regulation of transcription from RNA polymerase II pro-
moter in response to calcium ion (Table 4b).

Validation of differentially expressed miRNA targets
The associations we have identified are nominal, and 
do not survive adjustment for multiple testing, but do 
highlight some interesting candidates for follow up. The 

Table 3  Gene clusters from WGCNA analysis and GO terms analysis of genes within the top three clusters

(A) WGCNA: The table illustrates the 11 gene modules identified by WGCNA and reaching statistical significance after multiple testing that demonstrate correlated 
differential expression in somatostatin-positive cells. The table gives the average module logged fold change (logFC), the logged odds ratio that the module is 
differentially expressed (B) and the nominal p value (p) and the FDR-adjusted p value (Adj p). (B) GO analysis: The table gives the Gene Ontology (GO) biological 
processes pathway, the fold enrichment of differentially-regulated genes within that pathway and the p value for significance for biological processes pathways that 
contain significantly more differentially regulated gene modules in somatostatin-positive cells than would be expected by chance. Only GO processes from the ‘light 
sky blue 2’ gene module made FDR corrected p values, genes from modules ‘Orange Red 4’ and ‘Salmon 1’ were nominally significant

(A) WGCNA

Eigengene module LogFC p Adj p B

ME light sky blue2 − 0.46265489 0.012 0.436 − 4.00

ME orange red 4 − 0.461540016 0.013 0.436 − 4.010

ME salmon 1 − 0.428245371 0.020 0.436 − 4.11

ME indian red 1 0.418718931 0.023 0.436 − 4.14

ME alice blue 0.414679702 0.025 0.436 − 4.5

ME pink 3 0.408739235 0.027 0.436 − 4.16

ME wheat 3 − 0.395082849 0.032 0.436 − 4.20

ME sky blue 2 0.384220441 0.037 0.436 − 4.23

ME indian red 2 − 0.380769172 0.039 0.436 − 4.24

ME medium purple − 0.380324742 0.039 0.436 -4.24

ME blue 2 − 0.377223329 0.041 0.436 -4.25

B

GO biological process complete Fold enrichment Raw p value FDR

Protein modification by small protein removal (GO:0070646) 20.27 4.42 × 10–10 3.51 × 10–6

Protein deubiquitination (GO:0016579) 21.51 2.66 × 10–10 4.22 × 10–6

Modification-dependent macromolecule catabolic process (GO:0043632) 10.83 9.03 × 10–8 2.86 × 10–4

Modification-dependent protein catabolic process (GO:0019941) 11.05 7.63 × 10–8 3.03 × 10–4

Ubiquitin-dependent protein catabolic process (GO:0006511) 11.2 6.84 × 10–8 3.62 × 10–4

Proteolysis involved in cellular protein catabolic process (GO:0051603) 9.98 1.79 × 10–7 4.73 × 10–4

Cellular protein catabolic process (GO:0044257) 9.46 2.79 × 10–7 6.33 × 10–4

Protein catabolic process (GO:0030163) 8.72 5.51 × 10–7 0.001

Macromolecule catabolic process (GO:0009057) 6.32 2.05 × 10–6 0.004

Cellular macromolecule catabolic process (GO:0044265) 6.52 5.88 × 10–6 0.009

Protein modification by small protein conjugation or removal (GO:0070647) 5.83 1.44 × 10–5 0.021

MiRNA 2ʹ-O-methylation (GO:0061715) > 100 0.003

Immune system process (GO:000276) 3.15 0.004

Negative regulation of pre-miRNA processing (GO:2000632) > 100 0.005

Regulation of pre-miRNA processing (GO:2000631) > 100 0.005

Entry of viral genome into host nucleus through nuclear pore complex via importin 
(GO:0075506)

> 100 0.005

‘De novo’ co-translational protein folding (GO:0051083) > 100 0.005

Intramembranous ossification (GO:0001957) > 100 0.005

Direct ossification (GO:0036072) > 100 0.005

Osteoclast fusion (GO:0072675) > 100 0.005
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Table 4  Differentially spliced genes in somatostatin-positive cells

A

Location of splice event Gene symbol Exon Splicing 
Index

Exon p-val Exon event name Exon 
event 
score

Exon 7/8 DUS4L − 4.02 0.0082 Alternative 3ʹ acceptor site 0.2

Exon 6/6 CLIC4 5.34 0.0015 Alternative 5ʹ donor site 0.2

3ʹ end of exon 1/1 RNU5B-6P − 3.93 0.0087 Alternative 5ʹ donor site 0.2

Exon 11/11 DBNL; MIR6837 − 4 0.0049 Alternative 5ʹ donor site 0.21

Exon 7/7 NDUFS3 − 4.38 5.35E−05 Alternative 5ʹ donor site 0.21

Exon 6/6 ARHGDIB 4.46 0.0077 Alternative 5ʹ donor site 0.21

Exon 20/24 GTF2IP1 4.64 9.32E−05 Alternative 3ʹ acceptor site 0.21

Exon 3/6 TRIM64C 5.18 0.0089 Alternative 3ʹ acceptor site 0.21

Intron 4/12 NFKBIZ 5.34 0.0028 Alternative 5ʹ donor site 0.21

Exon 1/3 VAX1 9.05 0.0038 Alternative 3ʹ acceptor site 0.21

Intron 8/15 CARF − 2.71 0.0014 Intron retention 0.21

Exon 6/6 HMGN1 7.78 0.0017 Alternative 3ʹ acceptor site 0.21

Intron 11/36 NBPF12 2.68 0.0023 Intron retention 0.21

Intron 6/35 NUP160 3.74 0.0023 Intron retention 0.22

Intron 2/9 or
Intron 1/8

AP3M2 4.34 0.0051 Intron retention 0.22

Alternative 3ʹ acceptor site COL28A1 4.29 0.0068 Alternative 3ʹ acceptor site 0.23

Intron 12/21 ACAP1 3.01 0.0042 Intron retention 0.23

Exon 3/5 HINT2 2.95 0.0004 Intron retention 0.24

Intron 11/12 SEPT7P2 − 3.01 0.0089 Intron retention 0.24

Intron 3/8 or
Intron 2/7

ACTG2 − 3.09 0.005 Intron retention 0.24

Intron 6 in exon 7/16 SLC9A8 14.06 0.0043 Intron retention 0.25

Intron1 in exon 1/5 CUTA​ 3.34 0.0059 Intron retention 0.27

Intron 14/29 or 30 TRAPPC11 − 10.49 0.0014 Intron retention 0.32

Intron 6/8 STAG3L3; STAG3L2 3.78 0.0002 Intron retention 0.32

Intron 3/11 or
Intron 2/10

ACVR2A 5.65 0.0077 Intron retention 0.33

Intron 5/8 PRKRIP1 4.3 0.0019 Intron retention 0.36

Intron 5/12 or
Intron 7/13 or
Intron 4/9

PHYKPL 20.83 0.0014 Intron retention 0.36

Intron 12/18 or
Intron 13/19

MPP3 − 4.93 0.0013 Intron retention 0.37

Intron 4/7 GLT1D1 − 4.16 0.0004 Intron retention 0.37

B

GO biological process complete Fold enrichment Raw p value

Positive regulation of transcription from RNA polymerase II promoter in response to calcium 
ion (GO:0061400)

> 100 0.00

Positive regulation of NAD + ADP-ribosyltransferase activity (GO:1901666) > 100 0.01

Regulation of NAD + ADP-ribosyltransferase activity (GO:1901664) > 100 0.01

Post-embryonic camera-type eye morphogenesis (GO:0048597) > 100 0.01

Penile erection (GO:0043084) > 100 0.01

Cellular response to redox state (GO:0071461) > 100 0.01

Pyrimidine dimer repair by nucleotide-excision repair (GO:0000720) > 100 0.01

Sertoli cell proliferation (GO:0060011) > 100 0.01

Constitutive secretory pathway (GO:0045054) > 100 0.01
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quantity and quality of RNA that can be obtained from 
cells following cell sorting with an internal marker pre-
cludes subsequent validation of many differentially-regu-
lated transcripts; RNA produced from these experiments 
is likely to be fragmented and unlikely to contain frag-
ments of > 50 bp. We were able to assess levels of mature 
miRNAs in the sample set, which were suitable for analy-
sis on the basis of their small size of ~ 25 bp. The other 
classes of small RNA (variant snRNP components, snoR-
NAs) are of the order of 150 bp, and as such not likely to 
be accessible in the RNA samples by qRTPCR. We identi-
fied nine pre-microRNAs with a p value of < 0.001 in our 
initial list of potentially dysregulated transcripts (miR-
373, miR-543, miR-548t, miR-181a-3p, miR-181a-5p, 
miR450a-1-3p, miR-450a-5p, miR-6874-3p and miR-
6874-5p). The mature forms of these pre-microRNAs 
were assayed by qRT-PCR using RNA from sorted soma-
tostatin-positive and somatostatin-negative EndoC-βH1 
cell populations. Of these, only the mature forms of 
miR-543 and miR-181a-5p demonstrated dysregulated 
expression in somatostatin-positive cells (miR-543 down-
regulation p = 0.001 and miR-181a-5p upregulation 
p = 0.001; Additional file 1: Table S1).

miRNAs miR‑181a‑5p and miR‑543 do not influence 
changes in EndoC‑βH1 cell identity
To assess the role of the two mature miRNAs demon-
strating evidence of altered expression in somatostatin-
positive enriched cell populations (miR-181a-5p and 
miR-543), we altered their expression using miRNA 
mimics and antagomiRs in the presence and absence 

of 25  mM glucose and 50  μM Palmitic acid. We then 
assessed whether our intervention was able to induce the 
emergence of a somatostatin-positive population of cells 
in unstressed cells, or to protect against the emergence 
of a somatostatin-positive cell population in stressed cells 
when miR levels were adjusted to those seen in stressed 
and non-stressed cells respectively. Changes in miRNA 
levels after mimic or antagomiR treatment are provided 
in Additional file 1: Table S2. Treatment with 25 mM glu-
cose and 50 µM palmitic acid induced the emergence of 
a similar somatostatin-positive cell population to that we 
have previously observed (~ 5% of the population), but 
co-treatment with the miR-543 mimic and miR-181a-5p 
inhibitor did not abrogate the expression of somatostatin 
following immunofluorescence characterisation of hor-
mone profiles. Cells similarly transfected with the miR-
543 inhibitor and miR-181a-5p mimic but not exposed to 
additional cell stresses also showed no changes to their 
hormone profiles upon immunofluorescent characterisa-
tion (see Fig. 2 and Additional file 1: Figure S1).

HNRNPD gene knockdown causes the emergence 
of a somatostatin‑positive population of EndoC‑βH1 
‘delta‑cell like’ cells
To gain insight into the role of HNRNPD in altered beta 
cell fate, EndoC-βH1 cells were treated with a specific 
siRNA targeted to exon 3 of the HNRNPD gene, which 
targets all its known isoforms. We were able to reduce 
HNRNPD expression by 67% expression (p = 0.002). 
We found cells in which HNRNPD expression had been 
reduced but which had not been exposed to any cellular 

(A) Differentially spliced genes: This table shows the 29 most differentially spliced genes with exon p value of <p = 0.01, splicing index of > 2 or < −2 and exon event 
score of > 02. Splicing index is used as a measure to detect alternative splicing events where a value larger or smaller than one indicates the presence of alternative 
splicing. Exon event score is a further measure of an aberrant or alternative splicing events. (B) GO terms analysis: The table gives the Gene Ontology (GO) biological 
processes pathway, the fold enrichment of differentially-regulated genes within that pathway and the p value for significance for biological processes pathways that 
contain significantly more differentially spliced genes in somatostatin-positive cells than would be expected by chance

Table 4  (continued)

B

GO biological process complete Fold enrichment Raw p value

Mesenchyme migration (GO:0090131) > 100 0.01

tRNA dihydrouridine synthesis (GO:0002943) > 100 0.01

Negative regulation of trophoblast cell migration (GO:1901164) > 100 0.01

Sperm ejaculation (GO:0042713) > 100 0.01

Post-embryonic eye morphogenesis (GO:0048050) > 100 0.01

Post-embryonic camera-type eye development (GO:0031077) > 100 0.01

Negative regulation of neuroblast proliferation (GO:0007406) 99.01 0.01

Positive regulation of activin receptor signaling pathway (GO:0032927) 99.01 0.01

Positive regulation of T-helper 17 cell differentiation (GO:2000321) 99.01 0.01

Pyrimidine dimer repair (GO:0006290) 88.01 0.01

Post-embryonic animal organ morphogenesis (GO:0048563) 88.01 0.01

Positive regulation of T-helper 17 type immune response (GO:2000318) 79.21 0.01
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stress showed a gain of somatostatin expression in ~ 4% 
of the culture, comparable to our previous findings in 
stressed cells (n = 4 p = 1.66 × 10–12; Fig. 3). There was no 
evidence of a gain in somatostatin expression in either the 
control or lipofectamine control cultures. Although vali-
dation of the siRNA knockdowns for PHF12, C1orf123 
(CZIB), DNAJC11, GPN1, MALT1, SENP7 and ZNF248 
and the expressed miRNAs also showed reduced expres-
sion of their target genes (Additional file  1: Table  S3), 
there was no evidence for changes in differentiation sta-
tus for any other target (Fig. 4 and Additional file 1: Fig-
ure S2).

Discussion
In our previous work, we have described the emergence 
of a cell population exhibiting a gain in somatostatin 
expression, in otherwise clonal beta cells treated with 
multiple cellular stressors, a finding consistent with the 
elevated numbers of delta cells we have observed in the 
islets of patients with either T1D or T2D [14]. Changes 
in beta-cell differentiation states have also been reported 
by others, with dedifferentiation, re-differentiation and 
transdifferentiation to other pancreatic endocrine cell 
types observed [12–14]. Here, we present a comprehen-
sive characterisation of the transcriptome of the soma-
tostatin-positive cell population emergent in stressed 
clonal EndoC-βH1 beta cells, and demonstrate that the 
major changes present in these cells are apparent dysreg-
ulation of the non-coding genome, although for the tech-
nical reasons stated it was not possible to experimentally 
validate these changes. Finally, we implicate the RNA 
binding protein heterogeneous nuclear ribonucleopro-
tein particle D (HNRNPD) in the emergence of somato-
statin positivity.

HNRNPD (also known as AUF1) is a multifunctional 
RNA binding protein (RBP) with roles in regulation of 
alternative splicing, mRNA transcription, RNA stabil-
ity, RNA localisation and regulation of target transcript 
translation [16]. It, like other RNA binding proteins, has 
documented involvement in cellular stress response and 
is regulated by many cellular stresses, such as inflamma-
tion [22, 23]. Cross-regulatory relationships with inflam-
mation also exist; many cytokines are destabilised by 

binding of HNRNPD to A-rich elements (AREs) in their 
3ʹ untranslated regions [24]. Cytokine-induced HNRNPD 
expression has been linked with increased rates of beta 
cell apoptosis in patients with diabetes [19], while 
reduced HNRNPD expression is linked to survival of pan-
creatic beta cells [25]. Reduced expression of HNRNPD 
has been reported in the blood of children with T1D 
and is thought to be associated with disease progres-
sion [26]. Finally, HNRNPD has also linked with senes-
cence [27], which is an emerging new driver of both T1D 
and T2D [28, 29]. This is probably mediated by the role 
of HNRNPD in telomere maintenance [30] and its con-
tribution to splicing regulation in the context of cellular 
stress response [20, 22]. HNRNPD also has documented 
roles in differentiation decisions in other tissues; it plays 
a pivotal role in myogenesis by regulating fate-determin-
ing checkpoint mRNAs [31]. It plays a similar role in epi-
thelial-mesenchymal transition through stabilisation of 
EMT transcription factors such as TWIST1, SNAIL1 and 
ZEB1 [32, 33]. Interestingly, HNRNPD is a known down-
stream target of FOXO1 [15], which has previously impli-
cated in beta cell identity decisions [8].

The changes to the non-coding transcriptome we 
observe in somatostatin-positive cells are entirely consist-
ent with the consequences of dysregulation of HNRNPD. 
The majority of dysregulated transcripts we observe 
derive from the non-coding genome including precursor 
miRNAs and other small RNAs. HNRNPD is known to 
have roles in many features of miRNA biology, including 
miRNA biogenesis, as well as RISC loading and targeting 
to substrate [16], and long non-coding RNA transcripts 
(lncRNAs) are also targets of HNRNPD [34]. The GO 
pathways that demonstrate evidence of enrichment in 
WGCNA modules associated with somatostatin positiv-
ity are reflective of this. Several of the enriched pathways 
involve ubiquitination, which is tightly linked to ARE-
mediated mRNA decay [35]. Pathways involved with with 
miRNA biogenesis and processing are also evident (see 
Table 3b). In accordance with the role of HNRNPD as a 
regulator of splicing, we also observe major dysregulation 
of mRNA processing. 26% of splicing events display dif-
ferences in somatostatin-positive cells. The changes we 
have noted are mainly alternative 5ʹ or 3ʹ splice site usage 

Fig. 2  miR-543 and miR-181a-5p mimics and inhibitors do not induce/rescue somatostatin positivity in EndoC-βH1 cells. This figure illustrates 
the hormone profiles of EndoC-βH1 cells following manipulation of miR-543 or miR-181a levels and analysed using ANOVA. All data are derived 
from three biological replicates. A Stressed (25 mM glucose) EndoC-βH1 cells treated with miR-543 mimic. B EndoC-βH1 cells treated with 25 mM 
glucose only. C Non-stressed cells (in standard culture conditions) treated with an antagomiR to miR-543. D Non-stressed control (standard 
culture conditions) EndoC-βH1 cells. E Stressed (25 mM glucose) EndoC-βH1 cells treated with miR-181a-5p antagomiR. F EndoC-βH1 cells 
treated with 25 mM glucose only. G Non-stressed cells (standard culture conditions) treated with a miR-181a-5p mimic. H Non-stressed (standard 
culture conditions) control EndoC-βH1 cells. Cell nuclei are labelled with DAPI (blue). Somatostatin (SST) expression is given in green. Insulin (INS) 
expression is given in magenta. Scale bars represent 0–25 μM

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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or intron inclusion, rather than alteration in cassette exon 
usage. This is probably reflective of the role of HNRNPD 
in splice site silencing; the changes involve predominantly 

consensus splice sites, rather than the generation of truly 
aberrant transcripts from mid-exon splicing events. The 
GO pathways in which the genes displaying disrupted 

Fig. 3  An siRNA against the HNRNPD gene induces the emergence of a somatostatin-positive cell population in un-stressed EndoC-βH1 clonal 
beta cells. A The percentage of somatostatin-positive cells that emerge in a clonal population of EndoC-βH1 cells treated with an siRNA against 
HNRNPD versus scrambled lipofectamine control is given on the Y axis, and the nature of treatment is given on the X axis. ***p =  < 0.0001. Error 
bars represent SD. B Validation of siRNA mediated HNRNPD gene knockdown by qRTPCR. The identity of the treatment (siRNA or scramble control) 
is given on the X axis, and the mean expression of HNRNPD is given on the Y axis. *p =  < 0.05. Error bars represent SD. C Immunofluorescence 
demonstrating hormone expression in EndoC-βH1 cells treated with a siRNA against HNRNPD or with scrambled transfection controls. EndoC-βH1. 
The top images left to right are controls without any treatment. The middle images left to right are of scramble lipofectamine controls. The bottom 
images left to right are of the siRNA against HNRNPD. Cell nuclei are labelled with DAPI (blue). Somatostatin (SST) expression is given in green. 
Insulin (INS) expression is given in magenta. Scale bars represent 0–25 μM. All statistical tests were performed using ANOVA
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splicing are enriched are diverse, rather than reflecting 
specific changes in clustered groups of pathways as we 
see for the total gene expression changes. Many of the 
transcriptomic changes we have identified may therefore 
represent downstream effects of HNRNPD dysregulation, 
but at the present time, it is not possible to determine 
which of these changes are on the causal pathway to gain 
of somatostatin positivity, which are effects of this and 
which are effects of dysregulated HNRNPD expression, 
but unrelated to cell identity. These data are in agree-
ment with our previous findings, as we have previously 
reported a downregulation of HNRNPD expression in 
bulk cultures of EndoC βH1 in response to cellular stress-
ors [14]. We did not carry out a full assessment of effects 
on the whole transcriptome of stressed beta cells in our 
previous work however, so we would not have been able 
to identify changes to the non coding genome in our ear-
lier studies. A limitation of this study is the technical dif-
ficulty of reduced RNA integrity from FACS sorted cells, 
which precluded subsequent qPCR validation of gene 
expression and may have influenced miRNA detection. 
However, since both somatostatin-positive and soma-
tostatin negative cell populations had been subjected to 
the same treatment and sorted from the same sample it is 
unlikely that this significantly skewed these data. We also 
note that knock down of HNRNPD using an siRNA pro-
viding best coverage for the gene rather than using mul-
tiple different siRNAs may increase the likelihood for off 
target effects, although the siRNA in question was sup-
plied as a validated siRNA by the supplier.

This work provides evidence for a role for HNRNPD 
in the stress-related determination of beta cell identity. 
Our work is consistent with a model whereby the cellu-
lar stresses induced by disrupted metabolic homoeosta-
sis may lead to the dysregulation of HNRNPD expression 
and consequent changes to the non-coding genome and 
patterns of alternative splicing and mRNA turnover. 
Changes in cell identity may therefore represent a stress 
evasion mechanism adopted by beta cells, or it may 
reflect a chance event. Several questions remain. Firstly, 
the changes in hormone expression may not indicate full 
transdifferentiation. It is more likely that the cell iden-
tity changes are partial, since the cells do not express of 

markers of delta cell fate such as HHEX or GHSR. Sec-
ondly, it is not yet clear which of the downstream changes 
in HNRNPD target genes drive the changes in cell iden-
tity we have observed, and also why only a small pro-
portion of clonal beta cells gain somatostatin-positivity. 
This may indicate that some cells in an otherwise clonal 
population have some characteristic that renders them 
more prone to changes in hormone expression; beta 
cells are known to differ in their characteristics; some 
beta cells in pancreatic islets are ‘hub’ cells which are 
more sensitive to insult [36], and even a clonal cell line is 
rarely completely clonal. Small numbers of somatostatin-
positive cells have previously been reported by others in 
untreated EndoC-βH1 [37], but this may reflect the gen-
eral sensitivity of this cell line to cellular stress if not care-
fully controlled. We have not observed this phenomenon 
in any of our untreated cell populations. Another pos-
sibility is that the heterogeneity in cell identity response 
may reflect a stochastic aspect of non-coding dysregula-
tion; some combinations of non-coding dysregulation 
may result in changes in hormone profile, whilst others 
do not. Finally, EndoC βH1 cells are derived from foetal, 
rather than adult, pancreatic tissue and so may be more 
prone to changes in their differentiation state, since they 
have not undergone the final stages in their development.

Conclusion
The molecular mechanisms by which RNA binding pro-
teins contribute to determination of cell identity is an 
important area of study. The data presented here are 
consistent with a model whereby stress-related changes 
in HNRNPD gene expression lead to transcriptome-
wide changes to the dynamics of RNA regulation, dys-
regulation of the non-coding genome and the subsequent 
emergence of a somatostatin-positive cell population in 
the human pancreatic beta cell line EndoC βH1. Studies 
have shown that even in long duration diabetes, a pro-
portion of glucose responsive beta cells persist [4]. Pro-
tection of this remaining beta cell mass is an important 
goal, even in long duration diabetes. Understanding the 
processes by which beta cell mass is lost may provide a 
key to protection of this remaining beta cell reservoir. 
This role for RNA binding proteins is an emerging area 

Fig. 4  siRNA knockdown of additional coding genes from transcriptome data. The endocrine hormone profiles in EndoCβH1 cells with attenuated 
expression of the most dysregulated coding genes seen in transdifferentiated cells are presented here. Where genes demonstrated reduced 
expression in somatostatin-positive cells, we have ablated their expression with siRNA technology and assayed for the appearance of somatostatin 
positivity in non-stressed cells. Where target genes were upregulated in transdifferentiated cells, we have ablated their expression in stressed 
cells, and assayed for rescue. A PHF12, (down-regulated in transdifferentiated cells), B C1ORF123, (down-regulated in transdifferentiated cells), 
C SENP7, (down-regulated in transdifferentiated cells), D DNAJC11, (down-regulated in transdifferentiated cells), E ZNF248, (down-regulated in 
transdifferentiated cells), F MALT1, (up-regulated in transdifferentiated cells), G GPN1, (up-regulated in transdifferentiated cells). Nuclei are marked 
with DAPI in blue, insulin (INS) is given in pink, somatostatin (SST) is given in green. Scale bars represent 0–25 μM

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 15 of 18Jeffery et al. Cell Biosci          (2021) 11:144 	

of research and further studies will be needed to fully elu-
cidate the interactions between HNRNPD and the non-
coding genome in cell fate decisions.

Materials and methods
Culture and treatment of EndoC βH1 cells
The human clonal beta cell line EndoC-βH1 (passage < 25) 
was seeded in T25 flasks at a density of 1.75 × 106 cells/
mL and maintained according to a modified humanised 
culture protocol as previously described for 72  h prior 
to treatment with diabetes-related cellular stressors [38]. 
For assessment of the effects of elevated glucose and 
altered lipids (glucolipotoxicity), cells were treated with a 
cocktail of 25 mM d-glucose and 50 μM palmitic acid for 
48 h. Controls were maintained in 5 mM glucose media. 
Each treatment was carried out in six biological repli-
cates, along with ethanol vehicle-only controls.

Enrichment for somatostatin‑positive populations 
of human EndoC‑βH1 cells
The small (~ 5%) sub-population of somatostatin-positive 
EndoC-βH1 cells was isolated by FACS with the BD Bio-
science FACS Aria III (BD Biosciences, San Jose, USA), 
using an intracellular antibody against somatostatin 
(Alexa Fluor 488 mouse anti-human somatostatin, 1:100 
dilution, clone U24-354, 566032, BD Biosciences, San 
Jose, USA). Cells were fixed using ice-cold MeOH added 
dropwise and the cell membrane was permeabilised 
using 0.02% triton. FACS DIVA software 4-32-16 purity 
filter was used to ensure sample purity and gated as FCS/
SSC/FITC. Doublet cells were removed to ensure single 
cell populations and sorted cells were run back through 
to check for contamination. Approximately 20,000 cells 
were collected from six separate cultures into 750  μL 
Tri reagent LS (T3934, Sigma Aldritch, Steinheim, Ger-
many). The total volume was adjusted to 1  mL using 
DPBS (Thermo Fisher, Foster City, USA) and RNA was 
purified using a column based Zymo Direct-Zol RNA 
Miniprep kit (Cambridge Bioscience, Cambridge, UK) 
according to the manufacturer’s instructions to maximise 
yield.

Differential gene expression analysis 
of somatostatin‑positive cells relative 
to somatostatin‑negative cells
We measured patterns of total gene expression and tran-
scriptome wide patterns of alternative splicing in six sep-
arate biological replicates of somatostatin-positive and 
somatostatin-negative cell populations using Clariom D 
pico GeneChip Whole Transcriptome (WT) expression 
arrays (Thermo Fisher, Waltham, MA, USA). This tech-
nology was employed because the cell sort methodology 

with an internal cell marker precludes the extraction of 
full length, intact RNA for analysis with RNAseq or simi-
lar approaches, and necessitates alternative technologies 
for the assessment of the transcriptome. The Clariom D 
Pico approach allows the assessment of transcriptomic 
changes in RNA that has undergone considerable degra-
dation [39, 40], RNA integrity was assessed as part of the 
Clariom D pico library preparation and passed quality 
and integrity checks (UK Bioinformatics, King’s College, 
London, UK). Data underwent quality control for probe-
set mean for hybridisation intensity, probeset residual 
mean which compares probeset signal to residual signal, 
poly-A positive spike in controls as control genes and 
positive versus negative area under the curve. SST-RMA 
was selected to reduce background and normalize inten-
sity following which a differential expression analysis was 
undertaken using the Transcriptomic Analysis Console 
(TAC) (Applied Biosystems) software (TAC 4.0.2.10) 
designed for the analysis of Clariom D Pico data, using 
the default settings. Differential gene expression in TAC 
uses the Limma algorithm followed by EventPointer for 
exon level analysis [21, 41].

Identification of differentially‑expressed modules of genes 
in somatostatin‑positive cells
Although we detected some genes with altered expres-
sion in somatostatin-positive cells which were nominally 
significant, but did not meet the Benjamini Hochberg 
threshold for multiple testing. We therefore employed 
Weighted Gene Co-expression Network Analysis 
(WGCNA) [42] to identify potentially co-regulated mod-
ules of total gene expression in our dataset. Data were 
initially filtered to remove ‘AceView’ predicted transcripts 
and unlabelled genes. Genes with the same gene sym-
bol were aggregated into a single entry with the average 
expression of each individual probe. We next inferred 
and clustered the co-expression networks using a soft 
threshold power of 12, and a minimum module size of 
50. Module eigengenes were calculated using a module 
eigengene dissimilarity threshold of 0.25. Finally, mod-
ule eigengenes were used to infer module differential 
co-expression between the two conditions and taking 
into account the paired design of the study. Genes from 
within the top three clusters were taken forward to Pan-
ther gene ontology (GO) biological processes analysis 
[43, 44] to identify the biological or functional pathways 
enriched in differentially-regulated genes.

Assessment of genes demonstrating differential 
expression in somatostatin‑positive cells by gene class
We carried out an enrichment analysis of the distribution 
of coding gene, multiple complex loci (locus contains 
more than one gene type e.g. ribosomal and noncoding), 
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non-coding gene, small RNA, precursor microRNA and 
ribosomal RNA gene distribution in somatostatin-pos-
itive and somatostatin-negative cells using the χ2 sta-
tistic. The expected number of genes within a class was 
determined by taking the total number of genes in each 
class for the entire gene chip array. The observed number 
of genes in each class with a p value of < 0.05 was then 
determined and compared to the expected value by χ2 
analysis for each gene class.

Validation of differentially expressed miRNAs
We selected a number of non-coding genes with expres-
sion patterns suggestive of differential expression for 
further validation. The need to permeabilise the cell 
membrane for antibody entry for the FACS however ren-
dered the RNA from the sorted cells unsuitable for qRT-
PCR analysis of coding genes and other long transcripts. 
However, the RNA was of good enough quality to allow 
validation of some small RNAs. The top 100 most dysreg-
ulated transcripts identified nine differentially-expressed 
precursor microRNAs (pre-miRNAs) in somatostatin-
positive cells which we were able to validate differential 
effects on their mature miRNA products by qRTPCR 
which were analysed using ANOVA. These were the pre-
cursors to miR-373, miR-543, miR-548t, miR-181a-3p, 
miR-181a-5p, miR450a-1-3p, miR-450a-5p, miR-6874-3p 
and miR-6874-5p. We synthesised cDNA from RNA 
extracted from six separate biological replicates for the 
somatostatin-positive and somatostatin-negative popu-
lations of cells using the TaqMan advanced microRNA 
cDNA synthesis kit (Thermo Fisher, Waltham, MA, 
USA). We then performed qPCR validation of the mature 
microRNAs, using TaqMan advanced microRNA assays 
(Thermo Fisher, Waltham, MA, USA). Reactions were 
carried out in three biological replicates and three tech-
nical replicates with endogenous controls (miR-106b-3p, 
miR-93-5p and miR-27b-3p) selected for stability. qRT-
PCR reaction mixes comprised 2.5 μL Taqman® Univer-
sal PCR Mastermix II (no AmpErase® UNG) (Thermo 
Fisher, Waltham, MA, USA), 1.75 μL dH2O, 0.5 μL cDNA 
and 0.25 μL Taqman® gene assay (Thermo Fisher, Foster 
City USA) in a 5 μL reaction volume. Cycling conditions 
were: 50 °C for 2 min, 95 °C for 10 min and 50 cycles of 
15 s at 95 °C for 30 s and 1 min at 60 °C. Assay identifiers 
are given in Additional file 1: Table S1.

In vitro manipulation of differentially‑expressed 
non‑coding transcripts
For pre-miRNAs where we had found evidence that their 
corresponding mature transcripts demonstrated dysregu-
lated expression in somatostatin-positive cells (miR181a-
5p and miR-543), we carried out an in  vitro evaluation 
of their ability to abrogate (in stressed cells) or induce 

(in non-stressed cells) the emergence of a somatostatin-
positive cell population. EndoC-βH1 cells at passage < 25 
were seeded into six well plates at a density of 1 × 106 
cells/mL and maintained until 70% confluence. MirVana 
mimics and antagomiRs to miR-543 and miR-181a-5p 
were purchased from Thermo Fisher (Waltham, MA, 
USA). To assess whether recapitulating the miR levels 
seen in stressed EndoC-βH1 cells caused the emergence 
of a somatostatin-positive cell population, we introduced 
a mimic to miR-543 or an antagomiR to miR-181a-5p 
into EndoC-βH1 cells at a concentration of 75 pmol using 
Lipofectamine 3000 (Thermo Fisher, Waltham, MA, 
USA) for 48 h. To determine whether recapitulating the 
miR levels in non-stressed EndoC-βH1 cells treated with 
25 mM glucose and 50 μM palmitic acid, we introduced 
a mimic to miR-181a-5p, or an antagomiR to miR-543. 
Untreated and scrambled controls were also included in 
the experiment to control against non-specific effects of 
transfection. After 48  h, RNA was extracted using Tri-
Reagent (Thermo Fisher, Waltham, USA), and qRTPCR 
was carried out for assessment of target knockdown or 
mimic efficiency. As previously described, cDNA was 
synthesized using the TaqMan advanced microRNA 
cDNA synthesis kit (Thermo Fisher, Waltham, MA, 
USA). For qPCR validation of microRNA manipulations 
we used TaqMan advanced microRNA assays (Thermo 
Fisher, Waltham, MA, USA) for three biological repli-
cates and three technical replicates with the same endog-
enous controls previously described. qRTPCR reaction 
mixes comprised 2.5 μL Taqman® Universal PCR master-
mix II (no AmpErase® UNG) (Thermo Fisher, Waltham, 
MA, USA), 1.75  μL dH2O, 0.5  μL cDNA and 0.25  μL 
Taqman® gene assay (Thermo Fisher, Foster City USA) 
in a 5 μL reaction volume. Cycling conditions were: 50 °C 
for 2 min, 95 °C for 10 min and 50 cycles of 15 s at 95 °C 
for 30 s and 1 min at 60 °C. As previously, expression dif-
ferences and cell count were analysed using ANOVA. 
Identifiers are given in Additional file 1: Table S2.

In vitro manipulation of differentially‑expressed coding 
transcripts
We carried out an in vitro manipulation of levels of the 
eight coding genes represented in the top 100 dysregu-
lated genes and demonstrating > twofold increase or 
decrease in expression in the somatostatin-positive 
enriched cell population (HNRNPD, PHF12, C1orf123, 
ZNF248, SENP7, DNAJC11, MALT1 and GPN1) using 
targeted gene knockdown. Experiments were carried 
out in EndoC-βH1 cells in three biological replicates 
using validated Silencer siRNAs selected for provid-
ing best coverage for the target gene. (Thermo Fisher, 
Waltham, USA). Assay Identifiers are given in Addi-
tional file 1: Table S3. Where we had observed genes to 
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be down-regulated in somatostatin-positive cells, we 
knocked down gene expression in non-stressed cells and 
assayed for the emergence of a somatostatin-positive 
cell population. Where we had found genes to be up-
regulated in the somatostatin-positive cells, we knocked 
down target expression in stressed cells (25 mM glucose, 
50  μM palmitic acid), and assayed for ablation of the 
somatostatin-positive population. As before, EndoC-βH1 
cells at passage < 25 were seeded into 6 well plates at a 
density of 1 × 106  cells/mL and maintained until 70% 
confluence. siRNAs were introduced at a concentration 
of 75  pmol per transfection using Lipofectamine 3000. 
Untreated and scramble-treated cells were also included 
to control for effects induced by the transfection process 
itself. After 48  h, RNA was extracted using Tri-Reagent 
(Thermo Fisher, Waltham, USA) for assessment of tar-
get knockdown efficiency. For validation of the knock-
downs, all reactions were carried out in three biological 
replicates and three technical replicates. cDNA synthesis 
was carried out using EvoScript universal cDNA mas-
ter (Roche Life Science, Burgess Hill, UK) according to 
manufacturer’s instructions. The endogenous control 
genes PPIA, IDH3B, HPRT1 and GUSB were empirically 
selected for stability and, as previously, qRTPCR reaction 
mixes were 2.5 μL Taqman® Universal PCR mastermix II 
(no AmpErase® UNG) (Thermo Fisher, Waltham, MA, 
USA), 1.75 μL dH2O, 0.5 μL cDNA and 0.25 μL Taqman® 
gene assay (Thermo Fisher, Foster City USA) in a 5  μL 
reaction volume. The cycling conditions were: 50  °C for 
2 min, 95 °C for 10 min and 50 cycles of 15 s at 95 °C for 
30 s and 1 min at 60 °C. As before, statistical analysis was 
carried out by ANOVA.

Assessment of effects of in vitro gene manipulation 
on beta cell identity
To assess the effect of targeted manipulation of miRNA 
or coding gene targets, we assessed the hormone pro-
file of treated EndoC-βH1 cells by immunofluorescence. 
Cells were fixed using 4% paraformaldehyde for 15  min 
at 4 °C. Primary antibodies to SST were diluted in phos-
phate buffered saline (PBS) with 0.1  M Lysine, 10% 
donor calf serum, 0.02% sodium azide and 0.02% Triton 
X100 (ADST), to permeabilise the cell membranes and 
incubated overnight at 4  °C. Primary antibodies were 
visualised using species specific highly cross-absorbed 
secondary antibodies (Abcam, Cambridge, UK) diluted 
in ADST at 1/400 and incubated for 1  h at room tem-
perature. Sequential staining was then performed with an 
antisera raised against insulin (Additional file 1: Table S4) 
diluted in ADST for 1 h, followed by a goat anti guinea-
pig Alexa Fluor 555 along with DAPI (Sigma-Aldrich; 
1  μg/mL) for 1  h. Slides were visualised using a Leica 
AF6000 microscope (Leica, Milton Keynes, UK) and 

processed using the standard LASX Leica software plat-
form. Ten randomly selected images were taken for each 
of the three biological replicates. Details of all antibodies 
used are provided in Additional file 1: Table S4.
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